

Year 12 Chemistry

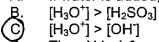
Acids and bases test 2018

Time allowed:		45 mi	45 minutes	
Name:	SOLU	T10 NS		
Mark =	/46			
Teacher:				
KLW	CEM	JPT	NMO	

Section 1 **Multiple Choice**

10 marks

- 1. Which of these is not an acid-base reaction?
 - $H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(I)$
 - $H_2O(I) + HCI (aq) \rightarrow H_3O^+(aq) + CI^-(aq)$ B.
 - $OH^{-}(aq) + H_3O_2^{+}(aq) \rightarrow H_2O(I) + H_2O_2(aq)$ $2 H_2O (aq) \rightarrow 2 H_2 (I) + O_2 (g)$
- 2. The conjugate base of HCO₃ is
 - H₂CO₃ CO₃²-H₂CO₃
 - CO₂
- 3. Which of the following solutions will have a pH greater than 7?
 - A.
 - В
 - 0.01 molL⁻¹ NH₄Cl 0.01 molL⁻¹ NaHSO₄ 0.01 molL⁻¹ CH₃COOH
 - 0.01 molL⁻¹ KCH₃COO
- 4. Which of the following pairs of solutions can not be used to prepare an effective buffer?
 - NaHCO₃ and HCI
 - HNO₃ and NaNO₃
 - CH₃COOH and KOH
 - NH₃ and HCl
- 5. Which of the following best describes the reaction that occurs when ethanoic acid reacts with magnesium carbonate?
 - $2 H^{+} (aq) + MgCO_3 (s) \rightarrow CO_2 (g) + H_2O (l) + Mg^{2+} (aq)$ A.
 - $2 \text{ CH}_3\text{COOH (aq)} + \text{MgCO}_3 \text{ (s)} \rightarrow \text{CO}_2 \text{ (g)} + \text{H}_2\text{O (I)} + \text{Mg(CH}_3\text{COO)}_2 \text{ (aq)}$
 - $2 \text{ CH}_3\text{COOH (aq)} + \text{MgCO}_3 \text{ (s)} \rightarrow \text{CO}_2 \text{ (g)} + \text{H}_2\text{O (l)} + \text{Mg}^{2+} \text{ (aq)} + 2\text{CH}_3\text{COO}^- \text{ (aq)}$
 - $2 H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow CO_{2}(g) + H_{2}O(l)$


Sulfurous acid (H₂SO₃) is an acid which ionises in water according to the following equation. 6.

$$H_2SO_3 (aq) + H_2O (I) \rightleftharpoons H_3O^+ (aq) + HSO_3^- (aq)$$

$$K_a = 1.54 \times 10^{-2}$$

Which of the following statements is true about 100 mL of a 0.1 molL⁻¹ H₂SO₃ solution?

If water is added, the pH will decrease. Α.

- The pH is 1.0
- Equal volumes of HF (a weak acid with Ka = 7.2 x 10⁻⁴) and a solution of nitric acid of equal 7. concentration are mixed together. Which of the following correctly indicates the various ions in the resulting solution in descending order of concentration?

$$H_3O^+ > NO_3^- > HF > F^-$$

- $H_3O^+ > NO_3^- > F^- > HF$
- $HF > H_3O^+ > NO_3^- > F^-$ C.
- D. $NO_3^- > H_3O^+ > F^- > HF$
- 8. A buffer is prepared consisting of equal concentrations of ethanoic acid and potassium ethanoate. A small volume of concentrated sodium hydroxide solution is added to this buffer and equilibrium is re-established. Which of the following is true?
 - A. The pH will remain unchanged
 - В. The value of the equilibrium constant for the reaction will increase.
 - The concentration of hydrogen ions will increase. C.
 - The concentration of ethanoate ions will increase.
- 9. The pH of an unknown aqueous solution is found to be 13.00. Which of the following is most likely to be the unknown solution?

 $1.00 \times 10^{-13} \text{ molL}^{-1} \text{ sodium hydroxide}$ $5.00 \times 10^{-2} \text{ molL}^{-1} \text{ barium hydroxide}$ $1.00 \times 10^{-13} \text{ molL}^{-1} \text{ nitric acid}$ $1.00 \times 10^{-2} \text{ molL}^{-1} \text{ potassium hydroxide}$

10. The Ka values of a number of acids are listed below:

Ka value
1.76 x 10⁻⁵
7.2 x 10 ⁻⁴
6.2 x 10 ⁻⁸
4.7 x 10 ⁻¹¹

Based on the above information, which of the following 1 molL⁻¹ solutions would you expect to have the highest pH?

- A. NaCH₃COO (aq)
- B. NaF (aq)
- C. Na₂S (aq)
 D. Na₂CO₃ (aq)

Section 2 Written questions

36 marks

Question 1 (2 marks)

Water is amphiprotic, meaning that it can act as both an acid and a base according to the Bronstëd-Lowry Theory. Using its reaction with HCl and NH₃ as examples, write balanced equations to show the amphiprotic nature of water.

Acting as an acid

Equation: H20(1) + NH3 (4) - NH4 + OH (41)

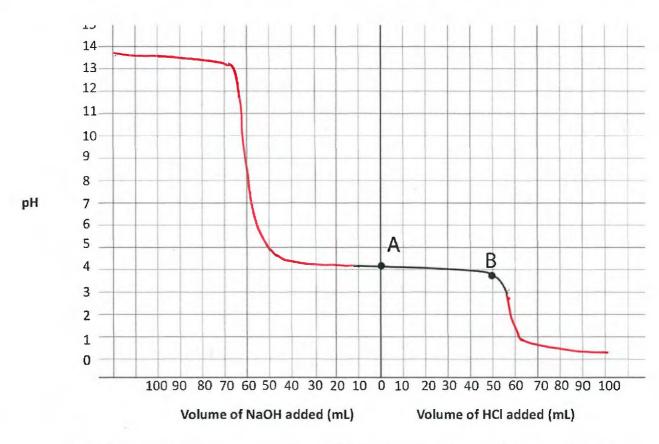
Acting as a base

Equation: H2O(1) + HCl(y) = H30ty + Cl(y)

-1 if the two equations are in the wrong place

Question 2 (11 marks)

A buffer was formed by the addition of 100 mL of 1 molL⁻¹ lactic acid (CH₃CHOHCOOH) (aq) to 100 mL of 1 molL⁻¹ sodium lactate (NaCH₃CHOHCOO) (aq). At this point, the pH was 3.9.


Lactic acid is a monoprotic acid and its structure and that of the lactate ion are shown below.

lactic acid

lactate ion

100 mL aliquots of the lactic acid/lactate buffer solution were added to two different beakers.

1 molL⁻¹ HCl (aq) and 1 molL⁻¹ NaOH (aq) were added to each beaker respectively, and the pH measured. A section of the resulting graph has been completed for you.

a) Write an equation to represent the equilibrium between the species present in the lactic acid/lactate buffer mixture.

$$\frac{\text{CH}_3\text{CHOHCOOH}_{(aq)} + \text{H}_2\text{O}_{(e)} \implies \text{H}_3\text{O}_{(aq)}^{\dagger} + \text{CH}_3\text{CHOHCOO}_{(aq)}^{\dagger}}{(1 \text{ mark})}$$

b) Explain why the pH drops significantly at point B. Use a calculation to support your answer.

the buffer capacity is exceeded ①
there is no more CH3CHOHCOO reg, for the H+ to react with ①
relevant calculation or mathematic reasoning ②
y. n(10ctate) = C × V = 1 × 0.05 = 0.05 moles
V(H4) containing 0.05 moles = n = 0.05 = 50 mL.
C 1 (3 marks)

c) Complete the graph between the addition of 100 mL of NaOH and 100 mL of HCI.

(1) pH rise ~ 50 mL of NaOH

(2) for ending between (13 ~ 14)

(2) marks)

d) Using an equation, explain why the buffer maintains a fairly constant pH when HCl (aq) is added between points A and B, but when the same amount of HCl is added to water, the pH drops by a significant amount.

When HCl is added to the buffer, reacts with it ion . the lactate CHICHOHCOO (up) + HID tay) -→ CH3CHOHCOOH + H2D(1) H, Ot ic consumed . Most of the added by a small amount. concentration increases only drops shi 10-7 water, the concentration af 0 H-IN 11 very little OH present to react with the concentration 1 d de d 50 and the PH greatly, drons (5 marks) for buffer explanation for water

d)	However, despite the difference in rates of reaction, both the propanoic acid and HCI
	solutions will react with the same mass of nickel hydroxide over time. Explain this
	observation.

CH3CH2COOH + H2O = H3O + CH3CH2COO (not required required)

Although less H3O + is present initially, propanoicacid continues to ionise, as it reacts with Ni(OH).

The total amount of H3O + available to react is the same

(2 marks)

Question 4

(5 marks)

a) Rank the following 1 \rm{molL}^{-1} solutions in order of increasing pH: KNO₃, Na₂CO₃, CH₃COOH, HNO₃

Lowest HNO3 < CH3 COOH < KNO3 < Na2 CO3 Highest
- (2 marks)

b) Using an equation, account for the predicted pH of Na₂CO₃

The CO_3^{2-} ion is weakly basic

H hydrolyses in water to form OH ions CO_3^{2-} + H2O \Rightarrow HCO3 + OH

[OH-] > [H3O+], so the solution is basic (1)

(3 marks)

Question 3

(9 marks)

Propanoic acid is a weak acid that ionises in water according to the following equation.

 CH_3CH_2COOH (aq) $+H_2O$ (I) \rightleftharpoons CH_3CH_2COO (aq) $+H_3O^+$ (aq)

 $Ka = 1.34 \times 10^{-5}$

a) Circle the two species acting as Bronstëd-Lowry bases in the above equation.

(1 mark)

b) Write a balanced ionic equation and observation for the reaction between solid nickel hydroxide and a solution of propanoic acid.

Equation: $Ni(OH)_2(s) + 2CH_3CH_2COOH_{(ag)} \rightarrow 2H_2O_{(1)} + Ni_{(ag)}^{2+} + 2CH_3CH_2COO_{(ag)}^{2+}$ (2 marks)

Observation:

Green solid dissolves in colourless solution (2 marks)

c) Compared to a solution of HCl of the same volume and concentration, propanoic acid will react more slowly with the nickel hydroxide. Explain this observation.

· propanoicacid is weak

· therefore the concentration of H+ is lower ()

· the frequency of collisions between H+ &

Ni (OH)₂ (s) is lower ()

(2 marks)

Question 5 (9 marks)

Determine the resultant pH of the following mixtures:

a) 200 mL of 1.5 molL⁻¹ NaOH solution is diluted with 100 mL of water.

b) 100 mL of an unknown solution of pH 2 is mixed with 200 mL of a 0.001 molL⁻¹ KOH solution.

CCGS Year 12 Chemistry